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Abstract The main purpose of the present work is the development of a general formulation for the flow of a
Newtonian fluid over manifolds with curvature. The novel formulation includes an explicit contribution of the Ricci
curvature in the diffusion of momentum and is applicable to flows that conserve a general volume: Riemannian or
otherwise. The general solution of the Stokes flow on a sphere and the associated Stokeslet are also computed.
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1 Introduction

The present work concerns the extension of the Navier–Stokes (N–S) equation to include flows on a manifold with
curvature. The N–S equation has known a long and illustrious history, starting with its derivation by Navier [1]
and Poisson [2] from molecular considerations to Saint-Venant [3] and Stokes [4] who first provided the modern
derivation of the (N–S) equations from the linear stress/rate-of-strain relation. In these momentous works the under-
lying physical space is tacitly assumed to be flat, which is the natural assumption for the study of the flow in our
three-dimensional Euclidean space. More recently, in [5] (see also the references therein) an extension of the N–S
equation was proposed for geophysical flows where the fluid is constrained to flow on a manifold. In that work,
molecular diffusion is accounted for by the Bochner Laplacian operator applied to the velocity vector field.

The latter extension, while mathematically correct, is not the only rational way to formulate the N–S equation
on a manifold. Indeed, Taylor [6] proposed a different extension of the N–S equation that starts with the strain-rate
tensor and uses the non-commutativity of the second derivative in spaces with curvature to obtain a formulation of
the N–S equation with the explicit inclusion of Ricci’s curvature in the molecular diffusion. Taylor’s equation agrees
with the equation for surfaces previously proposed by Aris [7]. In our present derivation, we choose a different
route: we extend the N–S equations from flat spaces to manifolds by first analyzing the motion of a Newtonian fluid
on flow leaves, that is, on smooth surfaces of the Euclidean three-space, which are invariant by the fluid flow. These
surfaces, which exist in any steady flow field, constitute physical examples of two-dimensional manifolds with a
compatible fluid flowing in it. The cues from such a flow lead us to posit a novel formulation of the N–S equations,
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where the effects of the manifold curvature are explicitly accounted for, as in Taylor’s and Aris’s work, but with a
distinct diffusion term. Our extension of the N–S equation also allows for the preserved volume to be any general
volume form, possibly different from the Riemannian volume, as is the case, for example, in axisymmetric flows.

Although not often used in fluid mechanics, Riemannian geometry is the germane theory for N–S equations on
manifolds. Riemannian geometry is the backbone of the general theory of relativity [8], and it is also key in the study
of classical mechanics [9–12] and control theory [13,14]. For fluid mechanics, the reader will find several interest-
ing applications of Riemannian geometry in the comprehensive review [15]. Readers not familiar with Riemannian
manifolds may consult [16,17].

The paper is organized as follows. In Sect. 2 we deduce the equation of motion of a viscous fluid in a flow
leaf. Based on this equation, in Sect. 3 we propose a novel formulation of the N–S on manifolds and we solve the
corresponding Stokes problem of the flow on a sphere. The solution to the Stokes equation would be useful for
numerous applications including the determination of the forces acting on a particle that is moving on the surface of
the Earth, or in the computation of the flow over a particle on a sphere under Marangoni convection. Some technical
results are presented in the Appendix.

2 Navier–Stokes equations on flow leaves

In this section, we analyze the flow equations for the fluid on its flow leaves. Let M denote the manifold contain-
ing the fluid flow. We assume for the moment that M = E3 is a three-dimensional Euclidean, affine manifold or
M = T

3 a three-dimensional flat torus. Suppose also the velocity field u ∈ X (M)1 is compatible with an integrable
distribution D ⊂ TM of rank = 2, that is, u(t, x) ∈ Dx , for all t ∈ J and all x ∈ M , where J is the time interval
where the solution is defined. We call the associated foliation � = (Li )i∈I a flow foliation and the corresponding
leaves L ∈ � the flow leaves. In other words, the flow leaves are smooth surfaces in M to which the velocity field
is tangent.

Remark 1 The use of the distribution D is not essential to our derivation. However, it simplifies some computations
that require the extension of some vector fields, and on the other hand, it always exists (locally) in a steady flow.
Moreover, the use of the distribution raises an intriguing question on the possibility of the solution to N–S equations
being compatible with a non-integrable distribution.

Our first result is on the governing equation for the fluid on surfaces which are invariant by the fluid flow. Such
surfaces can be obtained, for instance, by tracking a material line as it evolves in time in a steady flow or in flows
with symmetries.

Proposition 1 Assume the velocity field is compatible with the distribution D. Then, any leaf L ∈ � is invariant
by the flow and for each leaf the equations governing the fluid motion on the leaf are:

1. Continuity: divgLu = (
TrBD⊥ , u

)
gL ,

2. Tangent N–S equations:

∂u

∂t
+ ∇�

u u = − 1

ρ
gradLp − ν

(
∇�∗∇�u+ RicL(u)− γ

�
ζ

)
+ PDb

3. Normal pressure gradient:

[BD(u, u)]� + i∗L ∗
[

dp
ρ

+ νC1
1(∇ζ )

]
= 0,

where b is an external force field, ζ is the 2-form vorticity field ζ = du� and C1
1 denotes the contraction of the

first covariant index with the first contravariant (possibly raised) index.

1 We refer to the Appendix for the definitions and notation.
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On the Navier–Stokes equations on manifolds with curvature 57

Proof Just use

dδu�(v) = dLδLu�(v)+ dL
(
TrBD⊥ , u

)
gL (v) (1)

for all v ∈ TL and δMdu� = δMζ = −C1
1(∇ζ ). ��

Corollary 1 Suppose
(
TrBD⊥

)�
is exact and ζ = du� is tangent to a leaf L ∈ �. Then, there exists a volume form

ω ∈ �2(L) such that the equations of motion on the leaf L are:

1. Continuity: divωu = 0,
2. Navier–Stokes equations:

∂u

∂t
+ ∇�

u u = − 1

ρ
gradLp − ν

(
∇�∗∇�u+ RicL(u)− [

Lgrad log ∗ωu�
]�) + PDb.

3. Normal pressure gradient:

BD(u, u)+ PD⊥
gradp
ρ

= 0.

The proof is given in the Appendix.
Flows on leaves that preserves a volume form other than the Riemannian volume are, for example, flows with

a symmetry to rotations around an axis, or axi-symmetry. In this case, the flow leaves are semi-planes along the
axis of symmetry and the two-dimensional flow on the plane leaves preserves the axi-symmetrical volume form
ω = y dx ∧ dy, where (x, y) are Cartesian coordinates in the plane, with x along the axis of symmetry, rather than
the Riemannian volume ωg = dx ∧ dy.

The continuity and the N–S equations on the flow leaves have a physical meaning on their own. Indeed, these
equations are written in coordinate-free form and depend only on the geometry and flow field on the manifold. They
are similar to the corresponding equations in a flat space, but differ from them in fundamental ways: the effects of
Ricci’s curvature and the non-Riemannian volume change the viscous diffusion of momentum, and the divergence
in the continuity equation should be taken, in general, with respect to a non-Riemannian volume.

3 Navier–Stokes on manifolds with curvature

The physical significance and completion of the continuity and N–S equations on flow leaves, as derived in
Corollary 1, allow us to extend the continuity and N–S equations for an oriented Riemannian manifold in such
a way that the former equations naturally agree with the governing equations on a flow leaf when the vorticity
vector is orthogonal to the flow leaf.

The proposed general equations describing the motion of a Newtonian fluid with constant properties on a volume
Riemannian manifold (M, g, ω) are then:

1. Continuity equation: divωu = 0,
2. Navier–Stokes equation:

∂u

∂t
+ ∇uu = − 1

ρ
gradp − ν

(
∇∗∇u+ Ric(u)− [

Lgrad log ∗ωu�
]�) + b.

3.1 Comparison with previous formulations

The formulations in [5] and [6] are only valid for the conservation of the Riemannian volume. Accordingly, the
comparison below is provided in the context of a Newtonian fluid flow conserving the Riemannian volume. Clearly,
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the physical correctness of any of the previous formulations can only be determined by experimental evidence.
However, it is worth noting the analytical differences incurred by the three formulations.

Let us start by writing, using the present notation, the viscous contribution (denoted V) in the N–S equation for
each formulation.

1. In Ref. [5] the viscous contribution is extended from the flat-space formulation by using the Bochner Laplacian:

V(u) = −ν∇∗∇u.
This extension corresponds to a mathematical extension of the operator used in the flat space to the general case
of a manifold with curvature.

2. Taylor [6] in contrast starts with the constitutive law of the deviatoric stress tensor S = ν(∇u + ∇uT ). Taylor
then takes the divergence of the deviatoric stress tensor and uses the non-commutativity of the second derivative
in spaces with curvature and the incompressibility of the fluid to obtain:

V(u) = div S = −ν (∇∗∇u− Ric(u)
)
.

3. In the present work we use the covariant formulation of the N–S equations and the extension to general manifolds
is obtained from the analysis of the flow on the flow leaves. The results is:

V(u) = −ν (∇∗∇u+ Ric(u)
)
.

So the difference among the three formulations is the role the Ricci curvature plays in the diffusion of momen-
tum. The first question regards the dissipative nature of the viscous term. In a Euclidean space, one important
characteristic of the N–S equations is that the viscous term dissipates the total kinetic energy of the fluid. A simple
calculation shows that all three formulations provide dissipative, even if at different rates, viscous terms (for the
second formulation just note that V/ν = −2 ˙Def

∗
Def, where Def(u) = 1/2(∇u+ ∇uT ) and recall that ∇∗∇ is a

symmetric, positive operator in the usual L2 inner product of vector fields; as for the third formulation recall that
�u = ∇∗∇u+ Ric(u) and use the fact that � is a symmetric, positive operator with respect to the usual L2 inner
product of one forms).

So all three formulations above dissipate the total kinetic energy of the fluid. Locally, though, the behavior of
the Ricci tensor can be very different in each formulation. Thus, the Ricci tensor has no explicit effect in the first
formulation, regardless of the curvature of the manifold. As for the second and third formulation, the Ricci term
provides a local force per unit of volume-measure that is aligned with the flow for manifolds with local negative
curvature and a local stress opposing the flow in manifolds of local positive curvature.

To understand why this term produces such effects, let us consider the model of the fluid motion in a thin layer
on a sphere “in current use in dynamical meteorology and oceanography” according to Batchelor in his celebrated
book [18]. Indeed, in this book, Batchelor used four assumptions about the flow that leads to the neglect of the
radial components of velocity and acceleration. With the assumption that the radial component of the velocity is
negligible, we obtain the following equations for the viscous terms on a thin layer on a sphere, using the spherical
coordinates (θ, φ) (see, for example, [18], ibid. p. 601):

VBθ
ν

= 1

R2 sin θ

∂

∂θ
(sin θuθ )+ 1

R2 sin2 θ

∂uθ

∂φ2 − uθ

R2 sin2 θ
− 2 cos θ

R2 sin2 θ

∂uφ

∂φ
, (2)

VBφ
ν

= 1

R2 sin θ

∂

∂θ
(sin θuφ)+ 1

R2 sin2 θ

∂uφ

∂φ2 − uφ

R2 sin2 θ
+ 2 cos θ

R2 sin2 θ

∂uθ

∂φ
, (3)

where uθ , uφ are the physical components of the velocity vector field in the spherical coordinate system. Here
VB denotes the viscous term in the N–S equations on a thin spherical layer under the assumption that the radial
component of the velocity is null.

In the present formulation, the viscous term is given by (compare equations (14)–(15)):

Vθ
ν

= 1

R2

∂

∂θ

[
csc θ

∂

∂θ
(sin θ uθ )

]
+ csc2 θ

R2

∂2uθ

∂φ2 − 2 cot θ csc θ

R2

∂uφ

∂φ
, (4)

Vφ
ν

= 1

R2

∂

∂θ

[
csc θ

∂

∂θ

(
sin θ uφ

)] + csc2 θ

R2

∂2uφ

∂φ2 + 2 cot θ csc θ

R2

∂uθ

∂φ
. (5)
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On the Navier–Stokes equations on manifolds with curvature 59

Manipulating the first term in Eq. 4 we obtain,

∂

∂θ

[
csc θ

∂

∂θ
(sin θ uθ )

]
= 1

R2

∂2uθ

∂θ2 + cot θ

R2

∂uθ

∂θ
− uθ

R2 sin2 θ
= 1

R2 sin θ

∂

∂θ
(sin θuθ )− uθ

R2 sin2 θ
.

An analogous result holds for Eq. 5. Thus we conclude that the proposed formulation agrees with the current
models in meteorology and oceanography that assume negligible radial velocity. So, for example, using an eddy
viscosity to simulate the turbulent flow in the thin layer and assuming null radial velocity would require the inclusion
of Ricci’s curvature as proposed here, besides other terms providing for the variations of turbulent viscosity in the
original three-dimensional space. It is interesting to note that, under the previous conditions of null radial velocity,
the other two extensions considered in the paper would not predict the same effect due to the curvature.

To understand why the curvature can create such local “push” or “pull” on the fluid particle, it is useful to recall
its genesis. In any physical flow over a surface in the three-dimensional, Euclidean space, the stress acting over
the fluid is proportional to the symmetric part of the velocity gradient. The viscous term in the N–S is then the
divergence of this symmetric tensor. Even though the velocity vector is tangent to the surface, its gradient may
have, in general, components in the normal direction. So, the divergence appearing in the equation of motion for
a fluid flow tangent to the surface will also feel the variation of the component of the gradient of the velocity field
in the normal direction to the manifold. In the sphere such a term appears as, for example, −uθ/R2 sin2 θ . In the
general case, as shown in the paper, the physical quantity, independent of the coordinate system, associated with
the divergence of this normal component of the velocity variation, is −Ric(u). Finally, to see why this term predicts
a variation in the opposite sense of the Ricci curvature term we can use the Frenet apparatus which predicts that
along a curve, say, the trajectory of the fluid particle, the variation of the normal vector parameterized by the arc
length is proportional to a term involving the negative of the curvature of the curve times the tangent vector to the
curve; in symbols:

N ′ = −κT + τB,

where κ is the curvature of the curve, B = T ×N , and τ is the torsion vector. So, given the fact that the arc length is
a reparametrization of the fluid-particle trajectory, and that the velocity vector is aligned with the tangent vector T ,
we deduce that the physical contribution to such a variation of the component normal to the surface where the flow
takes place, must be against the curvature, and so, against the velocity vector for regions of local positive curvature,
as in a sphere, and in the same sense of the velocity vector in local regions of negative curvature, such as in a
hyperbolic surface.

3.2 Stokes equation on a manifold for Riemannian isochoric flows

As usual, the Stokes equation is obtained by letting the Reynolds number Re = U0L/ν tend to zero, that is, Re → 0,
while keeping the Strouhal number Sl = L�/U0 finite. Here U0, L, and � are characteristic velocity, length and
frequency scales. The resulting equation is then

1. Continuity equation: divgu = 0,
2. Stokes equation:

− gradp − µ
(∇∗∇u+ Ric(u)

) = ρb. (6)

Let us consider first the homogeneous form of the Stokes equation, that is, when b = 0. From the covariant form
of the homogeneous Stokes equation,

dp + µ�u� = 0 (7)

it is easy to show that the pressure and the vorticity form are harmonic, that is,
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�p = 0,

and

�ζ = 0.

In fact, from Eq. 7 we conclude that pressure and vorticity are harmonic conjugates, in the sense that they satisfy
a generalization of the Cauchy—Riemann equations:

dp = −µδζ,
valid for any manifold—it is interesting to note that, for a two-dimensional (resp. three-dimensional) manifold,
M ∗ ζ is a function (resp. 1-form with three components), just as the imaginary part of a complex number (resp.
quartenion) has one component (resp. three components).

This result provides an analogy between the velocity potential and the stream function in a potential flow, on
the one hand, and the pressure and vorticity in a Stokes flow, on the other. For a potential flow, the fluid flow is
a solution of the Euler equation which, in this case, represents the geodesic motion of the fluid in the group of
volume preserving diffeomorphisms [19]. Accordingly, the velocity field plays a key role and the velocity potential
and the stream function are both related to the velocity field. The Stokes flow, by contrast, represents an equilib-
rium equation for the stresses. So it is natural that the stresses play the main roles as harmonic conjugates: the
pressure field representing the potential function of the isotropic component of the stress tensor, and the vorticity
field representing the vector potential of the skew-symmetric part of the stress tensor.

Using Corollary 3 from the Appendix, the dynamics of the previous equations can be determined from:

�2ψ = 0. (8)

To solve the non-homogeneous equation, we use a simple extension of Pozrikidis’ [20] method to compute the
Green function in flat spaces. The main difficulty in extending Pozridikis’ method to arbitrary manifolds lies in the
extension of the constant vector field multiplying the Dirac delta function. The natural choice would be to consider
a parallel transport of the vector multiplying the Dirac delta function. However, the presence of the scalar curvature
would complicate the computations. Instead, we propose a fully covariant version of Pozrikidis’ method.

We seek a particular solution of the Stokes equation

dp + µ�u� = ρb. (9)

Let us start by solving the auxiliary equation

�� = ρb. (10)

Then, by applying δ to (9) and taking into account that δ and � commute, that is, δ� = �δ, we obtain

�p = δρb,

so that we may choose

p = δ�.

Now, for u� we consider

u� = 1

µ
δdH.

It follows immediately from the previous definition and δ2 ≡ 0 that divgu = −δu� = 0, regardless of H . In
other words, the continuity equation is satisfied for any choice of H .

Now to fix H we require u� to satisfy the Stokes equation (9) yielding

δd�H = ��− dδ� = δd�.

And we may select H such that

�H = �.
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3.3 Solution of the Stokes equation on a sphere

As an illustration of the computation of the Stokes flow on a manifold, we consider the flow on a sphere. Note
that the only smooth flow on the whole sphere is the null flow. This assertion follows from two facts: (i) p being
harmonic and so constant on the whole sphere, and (ii) u� being also harmonic (see Eq. 7, with p constant) and so
null from the isomorphism H1

g
∼= H1(M) and the triviality of the group H1(M) (the sphere is contractible). This

fact contrasts with the infinite number of smooth solutions that are possible in the plane or the flat torus T
2.

Thus, all non-null flows will have at least one singularity. To compute a general solution of the previous equation,
we start by writing (8) in the spherical polar coordinate system (θ, φ):

x = R sin θ cosφ, y = R sin θ sin φ, z = R cos θ,

where (x, y, z) are Cartesian coordinates with origin in the center of the sphere and R is the radius of the sphere.
Denote by � the physical component of the stream function ψ = �R sin2 θ dθ ∧ dφ. We have,
[

csc θ
∂

∂θ

(
sin θ

∂

∂θ

)
+ csc2 θ

∂2

∂φ2

]2

� = 0.

The circularity of φ allows the expansion

�(θ, φ) =
∑

k∈Z

�k(θ)e
ikφ,

where �k satisfies the following fourth-order, linear ODE:

�
(4)
k + 2 cot θ �(3)k − [1 + (2k2 + 1) csc2 θ ]�′′

k + (2k2 + 1) cot θ csc2 θ �′
k + k2

(
k2 − cos 2θ − 3

)
�k = 0.

The previous equation can be written in operator form as

L2
k�k = 0, (11)

where

Lk := d2

dθ2 + cot θ
d

dθ
− k2 csc2 θ id,

with id the identity operator. To simplify the last operator, we rewrite it into a general coordinate χ = χ(θ):

Lk = d2

dχ2

(
∂χ

∂θ

)2

+
(

cot θ(χ)
dχ

dθ
+ d2χ

dθ2

)
d

dχ
− k2 csc2 θ(χ) id,

where χ is selected to simplify this equation: χ := log[cot(θ/2)] and

Lk = cosh2 χ

(
d2

dχ2 − k2id
)
.

Let us consider the case when k �= 0. The two-dimensional kernel of Lk is then given by

kerLk =
{
a tank

(
θ

2

)
+ b cotk

(
θ

2

) ∣
∣∣a, b ∈ R

}
.

Any element of kerLk is clearly a solution of (11); the remaining solutions can determined from

cosh2 χ

(
d2

dχ2 − k2id
)
�k,± = e±kχ .

We can integrate the previous equation using the Laplace transform yielding,

�k,+(χ) = ekχ

cosh2 χ
∗ sinh kχ

k
,

or
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�k,+(χ) = cotk
(
θ
2

)

2k

[
2kk! cot2

(
θ

2

)

2F̃1

(
1, k + 1; k + 2;− cot2

(
θ

2

))
− 1

]

− tank
(
θ
2

)

2k

[
k

(
�

(
k

2

)
− �

(
k + 1

2

))
+ 1

]

for k > 0, where pF̃q(a1, . . . , ap; b1, . . . , bq; z) := pFq(a1,...,ap;b1,...,bq ;z)
�(b1)···�(bq) is the regularized hypergeometric func-

tion, and � := �′/� is the digamma function, with � the gamma function. For k < 0 we can use the symmetry
�k,+(χ) = �−k,+(−χ). Finally, �k,−(χ) is computed from �k,−(χ) = �−k,+(χ).

For k = 0 we have

kerL0 =
{
a + b log

(
tan

(
θ

2

)) ∣∣∣a, b ∈ R

}
,

and the remaining solutions are:

�0 = log

(
cot

(
θ

2

)) [
log

(
cot

(
θ

2

))
+ log(sin θ)− 4 log

(
cos

(
θ

2

))]
− Li2

(
− tan2

(
θ

2

))
,

where Li2 is the dilogarithm function and

�0 = log(sin θ).

To illustrate the Stokes flow over a sphere we plot in Figs. 1–3 the first 11 non-null basic flows associated with
the first modes of the Fourier expansion, for k = 0, 1, 2. These figures show a gamut of diverse flow structures
including flows with parallel streamlines (Fig. 1), twin vortices flows (Fig. 2, center right) and cellular flows (Fig.
2 center left, and right, and Fig. 3, center left and right). The flow in Fig. 1 left, with parallel velocity almost
everywhere, would be particularly useful as the far-field flow for the computation of the flow over a sphere centered
at φ̃ = θ̃ = 0. The plots depicting the flow for higher values of k—Fig. 3—show similar features to the previous
figures but with finer structures of the flow along the longitude coordinate.

The method for the non-homogeneous Stokes equation is used to compute the Stokeslet solution for the flow on
a sphere:

dp + µ�u� = δDirac
x0,α0

, (12)

where δDirac is the Dirac delta 1-form defined as

〈δDirac
x0,αx0

, β〉 := (
αx0, βx0

)
�1(Tx0M)

,

for all 1-forms β.
To determine the Stokeslet, we first write the equation for the fundamental 1-form �

�� = δDirac
x0,α0

(13)

Fig. 1 Stokes solution for k = 0 in the (φ̃, θ̃ ) plane, with φ̃ = φ − π and θ̃ = θ − π/2—units in degrees. Left: ψ = log
(
tan

(
θ
2

))
,

center: ψ = log(sin θ) and right: ψ = log
(
cot

(
θ
2

)) [
log

(
cot

(
θ
2

)) + log(sin θ)− 4 log
(
cos

(
θ
2

))] − Li2
(− tan2

(
θ
2

))
.
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Fig. 2 Stokes solution for k= 1 in the (φ̃, θ̃ ) plane—units in degrees. Left: ψ = csc θ cosφ, center-left: ψ = cot θ cosφ, center-

right: ψ = csc θ
[
(1 + cos θ) log

(
cot

(
θ
2

)) − log
(

csc2
(
θ
2

))]
cosφ and right: ψ = tan

(
θ
2

)

2

[(
log

(
sec2

(
θ
2

)) + 2
)

cot2
(
θ
2

) −
log

(
csc2

(
θ
2

)) − 2
]

cosφ
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Fig. 3 Stokes solution for k = 2 in the (φ̃, θ̃ ) plane—units in degrees. Left: ψ = 1
2

[
cot2

(
θ
2

) + tan2
(
θ
2

)]
cos(2φ), center-left:

ψ = 2 cot θ csc θ cos(2φ), center-right: ψ = 1
2

[(
log

(
sec2

(
θ
2

)) + 1
)

cot2
(
θ
2

) + (
log

(
csc2

(
θ
2

)) + 1
)

tan2
(
θ
2

) − 2
]

cosφ and right:

ψ = tan2
(
θ
2

)

2

[
log

(
csc2

(
θ
2

)) − cot4
(
θ
2

)
log

(
sec2

(
θ
2

))]
cosφ
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in a neighborhood of x0, using the polar coordinate system (θ, φ) above and such that α�x0 is tangent to θ at θ = π/2.
We obtain:

∂

∂θ

[
csc θ

∂

∂θ
(sin θ �θ)

]
+ csc2 θ

∂2�θ

∂φ2 − 2 cot θ csc θ
∂�φ

∂φ
= 1

sin θ
δDirac
π/2 ⊗ δDirac

φ0
, (14)

∂

∂θ

[
csc θ

∂

∂θ

(
sin θ �φ

)] + csc2 θ
∂2�φ

∂φ2 + 2 cot θ csc θ
∂�θ

∂φ
= 0, (15)

where�θ,�φ are the physical components of�:� = �θRdθ+�φR sin θdφ. Without loss of generality we can take
φ0 = 0. Owing to the circularity ofφ we can expand the unknowns�θ = ∑

n∈Z
�̂θ,neinφ and�φ = ∑

n∈Z
�̂φ,neinφ

and the Dirac distribution

1

sin θ
δDirac
π/2 ⊗ δDirac

0 =
∑

l∈N

l∑

m=−l
(−1)mYml (θ, φ)Y

−m
l (π/2, 0),

where Yml (θ, φ) =
√
(l−m)!
(l+m)!

√
2l+1
4π P

m
l (cos θ)eimφ, l ∈ N,m = −l, . . . , l are the spherical harmonics and the

polynomials

Pml (x) = (−1)m

2l l! (1 − x2)(m/2)
dl+m

dxl+m
(x2 − 1)l,

are the associated Legendre polynomials.
After some manipulation we obtain:

d

dθ

[
csc θ

d

dθ

(
sin θ �̂n

)]
− n csc θ (n csc θ + 2 cot θ) �̂n = (2n+ 1)

2nn!4π Pnn (cos θ), (16)

where �̂n := �̂θ,n + i�̂φ,n. We start with the solution of the homogeneous equation associated with (16):

d

dθ

[
csc θ

d

dθ

(
sin θ �̄n

)] − n csc θ (n csc θ + 2 cot θ) �̄n = 0. (17)

Using the change of coordinate ξ = cos θ we obtain

�̄′′
n(1 − ξ2)2 − 2ξ(1 − ξ2)�̄′

n − (1 + n2 + 2nξ)�̄n = 0, (18)

where ′ = d/dξ . Equation 18 has three regular singularities at −1, 1 and ∞ and so is of Hypergeometric type. The
general solution of Eq. 17 for n ≤ 0 is then

�̄n = en tanh−1 cos θ csc θ

[

a + b
(cos θ + 1) 2F1

(
1 − n,−n; 2 − n; cos2

(
θ
2

))
sin2

(
θ
2

)−n (− tan2
(
θ
2

))n

n− 1

]

,

with a, b ∈ R, and for n > 0 we can use the symmetry �̄n(θ) = �̄−n(π − θ).
Now, using the variation of parameters it is easy to obtain a particular solution for the non-homogeneous equation

(17) as:

�̃n = 2n+ 1

22+nπn!
∫ θ

0
sin σ tan4

(σ
2

) ∫ σ

0
log

(
cot4

(
σ̄

2

)
csc σ̄

)
Pnn (cos σ̄ ) sin σ̄ exp(−2 tanh−1 cos σ̄ )dσ̄dσ.

4 Conclusions

The main contributions of the paper are the derivation of an extension of the N–S equation that is based on the phys-
ics of fluids flowing over two-dimensional surfaces that are invariant by the flow in our Euclidean three-dimensional
space. The derived equation satisfies the requirement of kinetic dissipation by the viscous term. The novel formu-
lation also extends the N–S equations to flows that conserve general volume forms. The latter includes relevant
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flows such as flows with symmetry. The proposed equation is relevant for physical flows such as geophysical flows,
Marangoni convection on surfaces, and two-dimensional turbulence in soap films (see e.g. [21]).

Also, the analytical solution of the Stokes problem has been explicitly derived. This solution would be interesting
in the study of the flow over a particle moving on a sphere. That would provide new material for research in the
three areas mentioned above.

Appendix A: Definitions and auxiliary results

Notation

M denotes a smooth, connected, paracompact manifold and g: TM → R+ a smooth Riemannian metric on M ,
also represented as g(w) = (w,w)g ; TM (resp. T ∗M) denotes the tangent (resp. cotangent) bundle of M and
πTM : TM → M,πT ∗M : T ∗M → M the associated projections. Smooth means C∞ or real analytic (Cω).∇
denotes the Levi-Civita covariant differentiation operator associated with the Riemannian manifold (M, g). D
denotes a smooth distribution onM , that is, D is a vector sub-bundle of TM . With the distribution D and the metric
g we have the smooth decomposition TM = D⊕D⊥ and the corresponding (smooth, VB-morphisms) projections
PD: TM → D and PD⊥: TM → D⊥.∇� (resp. ∇⊥) will denote the projected covariant differentiation operator
on D (resp. D⊥), that is, ∇� = PD∇ (resp. ∇⊥ = PD⊥∇) and BD: TM⊕D → D⊥ (resp. BD⊥: TM⊕D⊥ → D)
the associated total second fundamental form of D (resp. D⊥) [22], that is, given u ∈ TpM, v ∈ Dp and w ∈ D⊥

p ,
then (BD(u, v), w)g = (∇XY ,Z

)
g

where X, Y and Z are germs of smooth sections such that X(p) = u, Y (p) =
v, Z(p) = w and X ∈ X (M), Y ∈ �(D), Z ∈ �(D⊥). Let N ⊂ M be a codimension 1 submanifold of M ,
then a k-form α ∈ �k(M) is parallel or tangent to N if the normal part, defined by nα = i∗N ( ∗α) is zero, where
iN : N → M is the inclusion map. Analogously, α is perpendicular to N if its tangent part, defined by tα = i∗ (α)
is zero. Here ∗ : �k(M) → �n−k denotes the Hodge star operator. Finally, the subscript g will denote variables
associated with the metric. For example, divg denotes the divergence operator corresponding to the Riemannian
volume.

Definition 1 Let M be oriented and fix a volume form ω ∈ �n(M), where n = dim(M). We define the
ω-codifferential operator δω : �k+1(M) → �k(M) as

δωα = 1

∗ωδ[( ∗ω)α]

for all α ∈ �k+1(M), where δ := (−1)nk+1 ∗ d∗ , is the usual codifferential operator. Then, the ω- Laplace–deRhan
operator�ω:�k(M) → �k(M) is defined by�ω = dδω+δωd. We callHk

ω(M) = {
α ∈ �k(M) : dα = 0, δωα = 0

}

the vector space of ω- harmonic fields.

Let M be compact and define the L
2
ω-inner product in �k(M) to be

(α, β)L2
ω

=
∫

M

(α ∧ ∗β)ω,

for all α, β ∈ �k(M). Then, we can easily extend to ω-operators many results that are true for the case when ω is
the Riemannian volume.

Proposition 2 Let M be a compact boundaryless oriented Riemannian manifold, then the following holds:

1. δ2
ω = 0,

2. δω = δ − igrad log(∗ω),
3. �ω = �− Lgrad log(∗ω),
4. δω

(
X�

) = −divωX, for all X ∈ X (M),
5. δω = d∗,
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6. �ω is symmetric and elliptic,
7. α ∈ Hk

ω(M) if, and only if, �ωα = 0,
8. Hodge Decomposition Theorem:

�k(M) = d�k−1(M)⊕ δω�
k+1(M)⊕ Hk

ω(M)

9. The vector space Hk
ω(M) is isomorphic to Hk(M) = ker dk/im dk−1.

Lemma 1 Let X ∈ �(D) then, Tr∇ (iD ◦X)= Tr∇�X-
(
TrBD⊥ , X

)
g
, where iD : D → TM is the inclusion map.

Corollary 2 If D is integrable with an associated foliation � = (Li )i∈I and X ∈ �(D) is a smooth section of D,
then over each L ∈ � we have

divg(iD ◦X) = divgLX − (
TrBD⊥ , X

)
gL .

where gL is the induced Riemannian metric on the leaf L.

Note that from the fact that for any α ∈ �(M),dα = 2 alt(∇α) it follows that the 1-form (TrBD⊥)� is exact, only
if alt

(∇ (TrBD⊥)�
) = 0. Also, if D is integrable and a leaf L is smoothly contractible, then alt

(∇ (TrBD⊥)�
) = 0

is also sufficient for exactness. In this case, we can define a volume ω = ϑµ ∈ �n(M), with ϑ = exp(−f ), where
dLf = Tr

(
BD⊥

)�. And with this volume it is true that:

Proposition 3 Let D be integrable and L ∈ � be a smoothly contractible leaf such that alt
(∇ (TrBD⊥)�

) = 0,
then there exists a volume ω ∈ �n(M) such that,

divg(iD ◦X) = divωX

for all X ∈ �(D).
In a flat spaceM , the equations describing the incompressible flow of a Newtonian fluid with constant properties

are the well known continuity and N–S equations:

1. Continuity: divgu = 0, where u ∈ X (M) is the velocity vector field and
2. Navier–Stokes equation:

∂u

∂t
+ ∇uu = − 1

ρ
gradp + νC1

1(∇∇u)+ b (19)

where ρ ∈ R+ is the density, ν ∈ R+ is the kinematic viscosity p ∈ F(M) is the pressure function, b ∈ X (M)
is a given force field.

From the N–S equation (19), we derive the equation for the vorticity, which plays a relevant role in the equations
for the flow leaves. We define the vorticity 2-form instead of the vorticity vector to simplify the computations in
the sequel.

Proposition 4 Let ζ = du� ∈ �2(M) denote the vorticity form. Then,

∂ζ

∂t
+ Luζ + ν�ζ = db�

Given any orthonormal frame (ξ1, ξ2) ofDU for some coordinate neighborhoodU ⊂ M,N ∈ �(D⊥
U) & ‖N‖ =

1 and a 2-form η ∈ �2(M) it is well defined the 1-form v ∈ DU �→ η (ξλ, B (ξλ, v))−∇η(N,N, v) ∈ R, λ = 1, 2.
We define the section γη ∈ �(D∗) such that (locally) we have,

γηU (v) = η (ξν, B (ξν, v))− ∇η(N,N, v)+ dL
(
TrBD⊥ , v

)
gL + iTrBη

for all v ∈ DU .
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Corollary 3 If in addition to the hypothesis of corollary 1 the leaf L is compact, boundaryless and smoothly
contractible, then there exists a ψ ∈ �2(L) such that

u� = δωψ,

and
∂�ωψ

∂t
+ Lδωψ�

�ωψ + ν�2
ωψ = dLb�.

Moreover, (L, ω) is a simplectic manifold and u ∈ X (L) is a Hamiltonian vector field with Hamiltonian function
H = (ω,ψ)gL, that is,

iuω = dLH

Proof The first assertion is an immediate consequence of the Hodge decomposition theorem and (9) of Proposition 2.
To prove the second it is enough to write the Navier–Stokes in its “covariant form”, that is,

∂u�

∂t
+ Luu

� − 1

2
dL ‖u‖2 + ν�ωu

� + 1

ρ
dp = b�;

then apply the exterior derivative to it, bearing in mind that the exterior derivative commutes with the Lie derivative
and the ω-Laplace–deRhan operator,

∂ζ �

∂t
+ Luζ

� + ν�ωζ = db�,

and observe that ζ = du� = dδωψ + δωdψ = �ωψ .
As for the remaining assertion,

∗ (iuω) = −(∗ω)u�
= −(∗ω)δωψ
= −δ(∗ωψ)
= ∗dL∗(∗ωψ)
= ∗dL (ω,ψ)gL ,

and the result follows from the fact that the Hodge star operator is an isomorphism. ��
Definition 2 The form ψ ∈ �2(L) in Corollary 3 is called the stream form and ∗ψ ∈ F(L) is the stream function.

A.1 Proof of Corollary 1

The proof of the continuity equation is the same as that for Proposition 3, where a sufficient condition for exactness
is also provided. To prove the remaining assertions we first note that the vorticity form being tangent to L (locally,
for some coordinate neighborhood U ) means

ζU = ζ12ω
1 ∧ ω2.

So, from a simple computation

δUζU =
(
∂ζ12

∂ω̂2 − ζ12�
2
33

)
ω1 −

(
∂ζ12

∂ω̂1 − ζ12�
1
33

)
ω1 − ζ12

(
�3

12 − �3
21

)
ω3.

Integrability ofD implies alt(BD) = 0, so the last term on the r.h.s. of the previous equation vanishes. Also, defining
the function ϑ ∈ F(U) by ωU = ϑω1 ∧ ω2 exactness of TrBD⊥ yields

�λ33ω
λ = −dU logϑ
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whence

δUζU = δωU ζU

and from the continuity equation and Proposition 2, item (4) we obtain

�Uu
�
U = �ωU u

�
U .

Then, the result follows at once from item (3) of Proposition 2 and the Weitzenbock formula [6]:

�u = ∇∗∇u+ Ric(u).
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